Supplementary Material.

The LONUT program.

Implementation:

The main program of LONUT is implemented in Perl language (newer than Perl 5.88). The source code is platform independent and tested on LINUX/UNIX system of cluster system. Its data preprocessing part requires alignment of nucleotide sequences created by Bowtie.

Input:

The LONUT program is able to accept several input files, which should contain the classification information of UMTs and NUTs, or the raw sequence information. For the former case, we classify input data based on the raw input data, then merely do the alignment for the NUTs set, meanwhile calling peaks for the UMTs set. For the latter case, we do the alignment for all raw input data, and then classify NUTs and UMTs based on the alignment results.

LONUT could accept the following input format:
Eland, Extended-eland, Fastq, Fasta, Bed, Bowtie alignment result.

Usage:

The program could take two kinds of results of Bowtie. Users could use -r option if the input file of LONUT is $-r$ result of Bowtie, i.e. the input of Bowtie is sequence file and this is default. If user uses this option, the name of input file should be in this format: $X X _$seq_r_bowtie, where $X X$ is the name of input data.

User could use -q option if the input file of LONUT is -q result of Bowtie, i.e. the input of Bowtie is fastq file. If user uses this option, the name of input file should be in this format: XX_q_bowtie, where XX is the name of input data.

Output:

The output of LONUT is combined matched tags (CMTs) file that combined a set of newly located tags from NUTs with a set of original UMTs.

Running time:

Number of raw tags	Running time
$\mathbf{1}$ million	1 minute
$\mathbf{2}$ million	3 minutes
$\mathbf{3}$ million	5 minutes 40 seconds
$\mathbf{4}$ million	7 minutes 35 seconds
$\mathbf{5}$ million	10 minutes
$\mathbf{2 0}$ million	38 minutes
$\mathbf{4 0}$ million	1 hour and 18 minutes
$\mathbf{1 0 0}$ million	3 hour and 23 minutes

Supplementary Tables.

Table S1. A comparison of three formulas in a ratio of Overlap and Extra peaks for ChIP-seq data of H3K4me2 in MCF7 cells.

H3K4me2	UMT Peak Num.	CMT Peak Num.	Overlap Peak Num.	Overlap Ratio	Extra Peak Num.	Extra Ratio
ES F[1]	27,314	31,073	27,082	87%	3,991	13%
ES F[2]	27,314	30,099	25,979	86%	4,120	14%
ES F[2]	27,314	30,935	28,210	91%	2,725	9%

Table S2. A comparison of three formulas in average peak scores of UMT peaks, CMT peaks, Overlap peaks and Extra peaks for ChIP-seq data of H3K4me2 in MCF7 cells.

H3K4me2	Num. of Top peak scores	Average UMT Peak Score	Average CMT Peak Score	Average Overlap Peak Score	Average Extra Peak Score
ES F[1]	27,314	3.739	3.803	3.844	3.479
ES F[2]	27,314	3.739	3.865	3.932	3.251
ES F[3]	27,314	3.739	3.760	3.793	3.352

Table S3. A summary of tag distribution of UMTs and NUTs in the first study case.

	Total Tags	UMT	UMT Ratio	NUT	NUT Ratio
Polll_Ctrl	$4,872,460$	$3,765,201$	77%	$1,107,259$	23%
PollI_E2	$10,810,080$	$7,968,585$	74%	$2,841,495$	26%
ER_E2	$12,652,745$	$8,092,251$	64%	$4,560,494$	36%
DNAme	$37,485,118$	$24,876,183$	66%	$12,608,935$	34%
H3K4me2	$2,910,475$	$2,417,878$	83%	492,597	17%
H3K4me3	$34,800,428$	$28,152,818$	81%	$6,647,610$	19%

Table S4. An overview of UMT and CMT peaks for eight datasets in MCF7 cells.

	Bin Size (w)	Threshold (P)	UMT Peak Num. (FDR)	Bin Size (w)	Threshold (P)	CMT Peak Num. (FDR)
Polll_Ctrl	160	0.94	$\begin{aligned} & \hline 18,988 \\ & (8.19 \%) \end{aligned}$	160	0.94	$\begin{aligned} & \hline 26,537 \\ & (6.25 \%) \end{aligned}$
Polll_E2	150	0.95	$\begin{aligned} & \hline 22,319 \\ & (2.14 \%) \end{aligned}$	150	0.94	$\begin{aligned} & \hline 30,083 \\ & (2.55 \%) \end{aligned}$
ER_E2	150	0.95	$\begin{aligned} & \hline 23,270 \\ & (2.55 \%) \end{aligned}$	150	0.96	$\begin{aligned} & \hline 32,485 \\ & (0.99 \%) \end{aligned}$
DNAme	150	0.97	$\begin{aligned} & 15,156 \\ & (1.89 \%) \end{aligned}$	150	0.96	24,775 (1.14\%)
H3K4me2	200	0.93	$\begin{aligned} & \hline 24,467 \\ & (3.35 \%) \end{aligned}$	150	0.93	$\begin{aligned} & \hline 31,073 \\ & (2.64 \%) \end{aligned}$
H3K4me3	150	0.96	$\begin{aligned} & 16,745 \\ & (1.41 \%) \end{aligned}$	150	0.94	$\begin{aligned} & \hline 22,736 \\ & (4.26 \%) \end{aligned}$

Table S5. A summary of Overlap and Extra peaks in eight datasets in the study case 1.

	UMT Peak Num.	CMT Peak Num.	Overlap Peak Num	Overlap Ratio	Extra Peak Num.	Extra Ratio
Polll_CtrI	18,988	26,537	11,726	44%	14,811	56%
PollI_E2	22,319	30,083	17,835	59%	12,248	41%
ER_E2	23,270	32,485	13,518	42%	18,967	58%
DNAme	15,156	24,775	8,592	35%	16,183	65%
H3K4me2	24,467	31,073	23,839	77%	7,234	23%
H3K4me3	16,745	22,736	16,745	74%	5,991	26%

Table S6. A summary of average UMT peak scores, CMT peak scores, Overlap peak scores, Extra peak scores of eight datasets in the study case 1.

	Num. of Peaks	Average UMT Peak Score	Average CMT Peak Score	Average Overlap Peak Score	Average Extra Peak Score
PoIII_CtrI	18,988	2.605	3.396	3.447	3.360
Pollı_E2	22,319	4.412	4.902	5.024	4.728
ER_E2	23,270	3.876	4.628	4.822	4.501
DNAme	15,156	5.323	6.181	6.106	6.219
H3K4me2	24,467	3.739	3.803	3.844	3.479
H3K4me3	16,745	7.029	7.251	7.336	6.755

Table S7. Motif results in the UMT Peaks set of ER_E2 data.

Known Motif	Located Motif	E-Value	Alignment
ER_Q6	ER_E2_UMTW3	$5.08 \mathrm{E}-04$	$* * * * * * C A G G G T G A C C * * * ~$ NNNGGTCANNNNNNYNNN
ER_Q6	ER_E2_UMTW4	$9.65 \mathrm{E}-04$	$* * * G G T C A C * * * * * * * * * * ~$ NNNGGTCANNNNNNYNNN
ER_Q6	ER_E2_UMTW5	7.04E-04	$*$ CAGGTCAS********* NNNRNNNNNNTGACCNNN
ER_Q6	ER_E2_UMTM1	3.04E-03	NNRGGNCANNSTGACCTN* NNNGGTCANNNNNNNYNN
ER_Q6	ER_E2_UMTM11	$2.82 \mathrm{E}-03$	NNRGGKCANKSTGACCTNNN NNNGGTCANNNNNNYNNN

Table S8. Logos of ER binding motif in the UMT Peaks set of ER_E2 data.

Motif	Motif Logo
ER_Q6	
ER_E2_UMTW3	$\operatorname{Vin}_{\operatorname{cog}} \mathrm{CDC}$
ER_E2_UMTW4	
ER_E2_UMTW5	$\text { Q } \operatorname{FACN}$
ER_E2_UMT1	
ER_E2_UMTM11	

Table S9. Motif results in the CMT Peaks set of ER_E2 data.

Known Motif	Located Motif	E-Value	Alignment
ER_Q6_02	ER_E2_CMTW1	1.35E-04	****TGACCT* RNNNTGACCTN
ER_Q6	ER_E2_CMTW2	7.85E-04	*CAGGTCAS********** NNNRNNNNNNNTGACCNNN
ER_Q6	ER_E2_CMTW3	$5.78 \mathrm{E}-04$	***GGTCACCCTG****** NNNRNNNNNNNTGACCNNN
ER_Q6	ER_E2_CMTW4	$1.01 \mathrm{E}-03$	***GGTCAC********** NNNGGTCANNNNNNNYNNN
ER_Q6	ER_E2_CMTF1	6.95E-04	******CANNSTGACCTN* NNNGGTCANNNNNNNYNNN
ER_Q6	ER_E2_CMTM1	$2.03 \mathrm{E}-03$	*NAGGKCANNNTGACCTNN NNNGGTCANNNNNNNYNNN
ER_Q6	ER_E2_CMTM11	$2.03 \mathrm{E}-03$	NNRGGKCANKGTGACCTNNN NNNGGTCANNNNNNNYNNN

Table S10. Logos of ER binding motif in the CMT Peaks set of ER_E2 data.

Motif	Motif Logo
ER_Q6_02	$\operatorname{An}_{-\infty}^{A} \operatorname{TVA}_{a}$
ER_Q6	
ER_E2_CMTW1	
ER_E2_CMTW2	a GACNVIG
ER_E2_CMTW3	$\mathrm{VAG}_{1} \operatorname{CAC}$
ER_E2_CMTW4	CABC
ER_E2_CMTF1	$\mathrm{CA}_{\underline{A}} \sin \mathrm{CN}_{\mathrm{c}}$
ER_E2_CMTM1	
ER_E2_CMTM11	

Table S11. An overview of the tag distribution of UMTs, NUTs and CMTs in KAP1, SETDB1 and H3K9me3 in K562 cell line.

Factors	Total Tags	UMT	UMT Ratio	NUT	NUT Ratio	CMT
KAP1	$35,171,595$	$25,909,139$	74%	$9,262,456$	26%	$35,171,595$
SETDB1	$23,818,887$	$15,722,857$	66%	$8,096,030$	34%	$23,818,887$
H3K9me3	$59,540,653$	$41,303,854$	69%	$18,236,799$	31%	$59,540,653$

Table S12. An overview of UMT and CMT peaks in KAP1, SETDB1 and H3K9me3 in K562 cell line.

	Bin size (w)	Threshold (P)	UMT's peak Num. (FDR)	Bin size (w)	Threshold (P)	CMT's peak Num. (FDR)
KAP1	150	0.98	8,545 (6.64%)	150	0.98	11,701 (1.65%)
SETDB1	150	0.95	20,705 (7.25%)	150	0.94	35,073 (1.92%)
H3K9me3	150	0.95	22,916 (6.37%)	150	0.93	36,532 (4.21%)

Table S13. A summary of Overlap and Extra peaks in KAP1, SETDB1 and H3K9me3 in K562 cell line.

Factors	UMT's Peak Num.	CMT's Peak Num.	Overlap Peak Num. (Ratio)	Extra Peak Num. (Ratio)
KAP1	8,545	11,701	$6,318(54 \%)$	$5,383(46 \%)$
SETDB1	20,705	35,073	$18,051(51 \%)$	$17,022(49 \%)$
H3K9me3	22,916	36,532	$18,894(52 \%)$	$17,638(48 \%)$

Table S14. An overview of the tag distribution of UMTs, NUTs and CMTs in NSRF, TCF7L2 and YY1 in four human cell lines.

Cell(TF)	Total Tags	UMT	UMT Ratio	NUT	NUT Ratio	CMT
GM12878 (NRSF)	$31,008,376$	$18,221,832$	59%	$12,786,544$	41%	$31,008,376$
H1 (NRSF)	$38,340,465$	$29,312,501$	76%	$9,027,964$	24%	$38,340,465$
HCT116 (TCF7L2)	$17,992,833$	$13,045,108$	73%	$4,947,725$	27%	$17,992,833$
K562 (YY1)	$19,457,626$	$12,827,352$	66%	$6,630,274$	34%	$19,457,626$

Table S15. An overview of UMT and CMT peaks in four datasets of the third study.

	Bin size (w)	Threshold (P)	UMT's peak Num. (FDR)	Bin size (w)	Threshold (P)	CMT's peak Num. (FDR)
GM12878 (NRSF)	150	0.95	27,479 (3.15%)	150	0.95	32,516 (1.15%)
H1 (NRSF)	150	0.95	31,160 (1.32%)	150	0.95	34,555 (1.18%)
HCT116	150	0.95	32,355 (0.59%)	150	0.95	34,906 (0.33%)
(TCF7L2)	150	0.95	17,143 (6.21%)	150	0.95	32,119 (1.05%)

Table S16. A summary of Overlap and Extra peaks in four datasets of the third study case.

Cell(TF)	UMT's Peak Num.	CMT's Peak Num.	Overlap Peak Num. (Ratio)	Extra Peak Num. (Ratio)
GM12878 (NRSF)	27,479	32,516	$14,602(45 \%)$	$17,914(55 \%)$
H1 (NRSF)	31,160	34,555	$14,513(42 \%)$	$20,042(58 \%)$
HCT116 (TCF7L2)	32,355	34,906	$21,642(62 \%)$	$13,264(38 \%)$
K562 (YY1)	17,143	32,119	$19,593(61 \%)$	$12,526(39 \%)$

Table S17. A summary of the average UMT's peak scores, CMT's peak scores, Overlap peak scores, Extra peak scores of four datasets in the third study case.

Cell (TF)	Num. of Top peak scores involved	Average UMT's Peak Score	Average CMT's Peak Score	Average Overlap Peak Score	Average Extra Peak Score	Average Overlap Peak Score/ Average Extra Peak Score
GM12878 (NRSF)	27,479	4.252	5.898	6.386	5.913	1.080
H1 (NRSF)	31,160	4.615	5.541	6.012	5.452	1.103
HCT116 (TCF7L2)	32,355	4.769	5.348	5.526	5.452	1.013
K562 (YY1)	17,143	3.850	5.501	5.916	5.585	1.059

Table S18. A summary of the comparison of 7,800 UMT peaks to CMT peaks at different thresholds for TCF7L2 in HCT116 cells.

UMT Parameters (Peaks Num.)	CMT Parameters (Peaks Num.)	Overlap Peaks Num. (\%)
$0.99 / 150$	$0.95 / 150$	$7,800(100 \%)$
$(7,800)$	$(34,906)$	$7,800(100 \%)$
$0.99 / 150$	$0.96 / 150$	$7,800(100 \%)$
$(7,800)$	$(28,620)$	$7,800(100 \%)$
$0.99 / 150$	$0.97 / 150$	
$(7,800)$	$(22,198)$	$5,389(69 \%)$
$0.99 / 150$	$0.98 / 150$	
$(7,800)$	$(15,044)$	
$0.99 / 150$	$0.99 / 150$	$(7,706)$

Table S19. Motif results in UMT's peaks of H1 (NRSF) data.

Known Motif	Located Motif	E-Value	Alignment
NRSF_01	H1hescNrsfPcr1x_umFactorW1	7.21E-05	$* * * * * * * * * * * * G G T G C T * * * ~$ GSYGCTGTCCGTGGTGCTGAA
NRSF_01	H1hescNrsfPcr1x_umFactorF1	$4.59 \mathrm{E}-03$	$* * * * * * * * * * * G G T G C T G A N N N N ~$ GSYGCTGTCCGTGGTGCTGAA* $* *$
NRSF_01	H1hescNrsfPcr1x_umFactorM1	9.68E-09	*TCAGCACCNNGGACAGCN** TTCAGCACCACGGACAGCRSC
NRSF_01	H1hescNrsfPcr1x_umFactorM1 1	$2.54 \mathrm{E}-14$	NGGNGCTGTCCNNGGTGCTGA *GSYGCTGTCCGTGGTGCTGAA

Table S20. Weblogos of Motif results in UMT's peaks of H1 (NRSF) data.

Motif	Weblogo
NRSF_01	
H1hescNrsfPcr1x_umFactorW1	
H1hescNrsfPcr1x_umFactorF1	$G \mathrm{G}_{\mathrm{N}} \mathrm{SA}_{2}$
H1hescNrsfPcr1x_umFactorM11	

Table S21. Motif results in CMT's peaks of H1 (NRSF) data

Known Motif	Located Motif	E-Value	Alignment
NRSF_01	H1hescNrsfPcr1x_combinedFactorW1	7.09E-05	$* * * * * * * * * * *$ GSYGTGCTT**
NRSF_01	H1hescNrsfPcr1x_combinedFactorM1	$6.59 \mathrm{E}-09$	${ }^{* *}$ NGCTGTCCNNGGTGCTGA* GSYGCTGTCCGTGGTGCTGAA
NRSF_01	H1hescNrsfPcr1x_combinedFactorM11	$0.00 \mathrm{E}-0$	${ }^{*}$ TCAGCACCNYGGACAGCNCC TTCAGCACCACGGACAGCRSC

Table 22. Weblogos of motif results in CMT's peaks of H1 (NRSF) data

Motif	Weblogo
NRSF_01	
H1hescNrsfPcr1x_combinedFactorW1	
H1 hescNrsfPcr1x_combinedFactorM1	
H1 hescNrsfPcr1x_combinedFactorM11	

Table 23. Motif results in UMT's peaks of HCT116 (TCF7L2) data

Known Motif	Located Motif	E-Value	Alignment
TCF7L2_Q5	Hct116Tcf712_umFactorF1	5.73E-03	WTCAAAGNNNNN WTCAAAGS****
TCF7L2_Q5	Hct116Tcf712_umFactorM13	$1.65 \mathrm{E}-03$	NNNNNNNNNNASATCAAAGN $* * * * * * * * * * * W T C A A A G S ~$
TCF7L2_Q5	Hct116Tcf712_umFactorM2	$1.67 \mathrm{E}-03$	NNNNNASATCAAAGNN $* * * * * * * W T C A A A G S * ~$

Table S24. Weblogos of motif results in UMT's peaks of HCT116 (TCF7L2) data

Motif	Weblogo	
TCF7L2_Q5	$\text { cul } 1$	
Hct116Tcf7l2_umFactorF1	$\hat{V} \\| \operatorname{CAF}_{\underline{A}}$	
Hct116Tcf712_umFactorM13		
Hct116Tcf7l2_umFactorM2		

Table S25. Motif results in CMT's peaks of HCT116 (TCF7L2) data

Known Motif	Located Motif	E-Value	Alignment
TCF7L2_Q5	Hct116Tcf712_combinedFactorW1	4.59	E-05

Table S26. Weblogos of motif results in CMT's peaks of HCT116 (TCF7L2) data.

Motif	Weblogo
TCF7L2_Q5	cun Cin
Hct116Tcf712_combinedFactorW1	
Hct116Tcf7I2_combinedFactorF1	
Hct116Tcf7l2_combinedFactorM12	
Hct116Tcf7l2_combinedFactorM13	

Table S27. A summary of CR (Chung et al) peaks and CMT peaks both called by BELT.

Thresholds	CR Peaks Num. (FDR)	CMT Peaks Num. (FDR)	Overlap Num. (\%)
0.95	$33,750(1.84 \%)$	$34,906(0.53 \%)$	$22,001(63 \%)$
0.96	$27,783(0.66 \%)$	$28,620(0.77 \%)$	$18,104(63 \%)$
0.97	$21,427(0.44 \%)$	$22,198(0.35 \%)$	$14,206(64 \%)$
0.98	$15,199(0.17 \%)$	$15,044(0.21 \%)$	$10,308(69 \%)$
0.99	$8,022(0.013 \%)$	$7,706(0.02 \%)$	$6,298(82 \%)$

