
Supplementary Methods, Tables and Figures 

Calculation of an average fragment length for a ChIP sample  

The read enriched area on both strands should be paired together at a target site and show a bimodal 

pattern. In the first step, BELT sets a very high threshold (0.9999) and finds >=100 well-paired peaks, (if 

less than 100 pairs are found, the threshold is reduced and the process is repeated until more than 100 are 

found). Then, BELT calculates the average fragment length at each of these high significant target sites in 

Formula 1), 
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where Pf and Pr are the read’s position on the forward and reverse strands respectively and nf, nr represent 

the number of reads on the forward and reverse strands respectively. 

To avoid excluding long fragments that have ends falling out of the enriched area, we extend the area 

by 200 bp on each side. The whole genome-wide average fragment length is computed L = l  and used to 

further shift reads, search for possible target site etc. 

Decoding the ChIP fragment position  

To estimate the fragment positions of the ChIP sample, we shift all reads towards the mid-point of the 

fragment by L/2 whereby each of these resulting points is considered as a representation of one fragment.  

Determination of significant enrichment level thresholds 

We define a series of bins, varying by default from 100 to 500bp, by evenly dividing the genome and 

counting the density of reads for each bin. Then, the user’s input defines significant enrichment level 

thresholds based on a percentile ranking statistic method. After sorting the enrichment level for all bins, 

the threshold is taken at the percentile of the confidence level. By default, five thresholds are defined 

from 0.95 to 0.999 percentile levels. 

Definition of a peak and localization of the target site 

A peak is defined as a set of continuous bins that have an average enrichment level higher than the 

threshold. Our algorithm only allows gaps with one bin in length, since larger gaps might indicate that 

there are two closely located peaks. After a peak is defined, we calculate the exact target site for that peak 

using Formula 2) with the assumption that the fragments are symmetrically distributed around a target 

site. 
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where Pm denotes the exact binding motif, modification site etc, nt is the number of reads in the region, Pf 

and Pr are the reads’ position on the forward and reverse strand respectively and d is the distance shifted 

(equals L/2). 



Data normalization 

By default, robust linear regression is applied to normalize data with different sequencing depth since we 

assume that all experiments were performed under the same controllable conditions. First, enrichment 

levels of 10k bp bins are counted for each sample. Then a normalization factor is calculated by 

performing robust linear regression between two samples’ bin enrichment levels. Two samples are 

adjusted to have a comparable enrichment level using the normalization factor. 

Calculation of a p-value 

BELT performs Fisher exact tests and calculates a p-value for each peak if sample comparison is 

performed. Peaks with a p-value less than 0.05 are defined as passed peaks, and others are considered 

rejected peaks. Both passed and rejected peaks are recorded as output. 

Ranking the resultant peaks 

Peaks are ranked by a score which measures their “quality/significance” and is empirically defined in 

Formula 3). This score is also used to rank the peaks in a particular percentile. We take several factors 

into account: the length of a peak, the average score of bins, and the shape of a peak.  
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where Sp is the score of a peak; Sa is the average reads count of bins in the peak; m denotes the number of 

bins in the peak defined as m = Lp / Lw, Lp: the length of the peak; and Lw: the width of a bin. 

Importantly, the score will increase the weight of a peak's shape and determine its order. Therefore, in 

general, if two peaks contain same amount of reads, the narrow one is favored, in another case, higher 

enriched peak is favored among peaks with same width. 

Estimation of False Discovery Rate (FDR) 

For a percentile rank r and a test statistic Zk, we want to test a null hypothesis, 

        Hk0: E(Pk) = 0     4) 

where for peaks Pk, k=1,…, n, E is the expected value of the number of false positive peaks among all 

claimed true n peaks in that level r. In this case, we define this E value as a false discovery rate (FDR). 
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where FP(r) is the number of true false positive peaks with level r and TP(r) is the number of peaks 

claimed as true peaks with level r. 

Practically BELT generates simulated datasets to compute FDR, where each dataset includes 

simulated peaks and background noise reads based on the real ChIP-seq data. The procedure of data 

generation is described in the following section (Generation of synthetic, simulated background data). 



Let Nb denote the number of peaks formed by simulated background data and Nt denote the total 

number of peaks detected from ChIP data. The FDR can be re-written as 
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Generation of synthetic, simulated background data 

We define a signal-noise-ratio (SNR) level as the following Formula 7), which is the basis for the Monte-

Carlo simulation of data: 
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Where R (
so RRR  ) denotes the total number of reads, Rs denotes the number of reads that fall into 

peaks, and Ro denotes the number of reads that are not in any peak. 

A). Simulated peaks (target sites) 

(a) Randomly generate n target sites (e.g. 10 nt in length) on the genome; (b) For each site, generate a 

certain number of artificial fragments that mimic the ChIP sample; (c) Randomly define each fragment’s 

length, varying from 100-300 nt; (d) Randomize each fragment’s position around the site, all fragments 

should cover the target site; (e) For single end sequencing record the coordinates of one end of each 

fragment, for paired end sequencing, both ends are recorded, whereby each end represents one read (the 

simulation is based on a real sample where the repeated regions have already been removed by the peak 

finding process; thus, we do not need to exclude the repeats regions in our simulation process). 

B). Randomly generate background noise reads 

(a) After obtaining the coordinates of the reads in A), we randomly generate coordinates for background 

fragments throughout the genome. The number of fragments is equal to R(1-SNR) for single end 

sequencing or R(1-SNR)/2 for paired end sequencing. (b) We record the coordinates of the one or two 

end(s) of the fragments as reads. If aberrant genome flag is on, an amplification factor will be calculated 

for amplified regions. An amplified region is defined as a large non-pericentromeric non-repetitive 

genomic region (>=10kb) that has a significant high input enrichment compare to majority of normal 

genomic region. The number of background noise reads generated in such region is multiplied by the 

amplification factor. 

C). Synthetic dataset 

A synthetic dataset is defined as a dataset of a pre-determined number of simulated peaks plus 

background noise reads; this dataset is a combination of the reads generated in both A) and B) and is used 

for our evaluation purposes. 

D). Simulated dataset 



A simulated dataset is defined as a dataset of a number of permutated reads within peaks in a 

corresponding ChIP data plus background noise reads. This dataset is used for the purpose of determining 

the FDR for each real data. 

Percentile cutoff, p-value and FDR for BELT 

The percentile cutoff is to distinguish signal enriched regions and back ground noise regions in the 

experimental data. The p-value is to determine if these signal enriched regions in the experiment data 

have significantly higher levels of enrichment compared to the counterpart regions in the control data. 

The peaks that have a p-value greater than 0.05 will be filtered out from the final result and output as 

rejected peaks. FDR is a measure of the overall confidence level of the identified peaks. 

Implementation 

Both PELT and BELT use Perl CGI scripts to receive user input and create temporary PHP pages on the 

server for user jobs. New jobs are polled on average every five minutes (by a Perl script with PELT and a 

bash shell script in BELT), and sent to processor scripts written in Perl. PELT is written in Perl, and  

BELT is written in C++. Both run on Linux/Unix platforms. PELT uses a server-side program written in 

Java to generate the graphics, and BELT uses a client-side Java applet to graphically display the results. 

GNU plotutils and the GNU scientific library are used for plot creation and spline interpolation. Gene 

annotation is performed with a Python script. 

Gene annotation 

Both PELT and BELT use the same annotation method. The midpoint of each peak is calculated, and 

compared to 5’ and 3’ of annotated RefSeq Genes. Distances from the nearest gene in both the 5’ and 3’ 

lists are calculated, and the gene with the annotation highest in priority is assigned to the peak. 

Annotations are listed below. 

Annotation (in descending order 

of priority) 

Relative distance to an annotated 

RefSeq gene 

5_TSS -1000 to 1000 

3_Core 2000 

5_Proximal 10000 

3_Proximal 10000 

Intragenic within gene 

5_Distal 100000 

3_Distal 100000 

Gene_Desert >100000 



 

 

Figure S1. A summary of the BELT algorithm including five steps: 1) Defining a series of bins by evenly dividing 

the genome varying by default from 100 bp to 500 bp, and counting the density of reads for each bin; 2) Calculating 

an average fragment length for a ChIP sample by considering the direction of the reads, and decoding the fragment 

position by shifting reads; 3) Determining significant enrichment threshold levels by a percentile rank statistic 

method; 4) defining binding regions (peaks) and locating the binding motifs within identified peaks by taking the 

average of fragments position; 5) Utilizing Monte-Carlo simulation for modeling background based on signal-noise-

ratio of ChIP-seq data to estimate false discovery rates. If a control dataset is available, such as IgG, input data, a 

Fisher exact test or Chi-square test is applied to compute the p-value for identified peaks. 
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Figure S2. A. In a comparison of BELT and other programs (MACS [Ref 1], QuEST [Ref 2], PeakSeq [Ref 3] and 

SISSR [Ref 4]), all overlap rates were above 74%. The worst case overlap rate was 74% between BELT and QuEST 

on NRSF data, and the best overlap rate was 100% between BELT and PeakSeq on CTCF data. Overall, BELT had 

the highest number of overlapping peaks with PeakSeq ( 95.5%-100%) for all four datasets. No comparison was 



made between QuEST and BELT on CTCF due to the lack of a control dataset. B. Our program showed similar or 

higher accuracy in terms of motif localization than the other programs tested. 

 

Table S1. Program parameters (default if not specified)  

 CTCF FOXA1 ER NRSF 

MACS 
mfold 32 

p value 1e-40 

mfold 32 

p value 1e-18 

mfold 32 

p value 1e-16 

mfold 32 

p value 2e-6 

PeakSeq 
FDR 0.001 

p value 0.005 

FDR 0.001 

p value 0.005 

FDR 0.001 

p value 0.005 

FDR 0.001 

p value 0.005 

QuEST None 

ChIP tags threshold 

27 

Region width 850 

Other parameters 

default 

ChIP tags threshold 

18 

Other parameters 

default 

ChIP tags threshold 

25 

Region width 410 

Other parameters 

default 

SISSR 
FDR 1e-12 

window size 250 

FDR 1e-3 

e value 10 

p value 0.00011 

FDR 0.1 

e value 10 

p value 0.009 

FDR 1e-3 

window size 134 

BELT 
percentile 0.999 

bin size 350 

percentile 0.999 

bin size 290 

percentile 0.9975 

bin size 400 

percentile 0.995 

bin size 200 

 

 

Ref 1. Zhang, Y., et al. (2008) Model-based analysis of ChIP-Seq (MACS), Genome Biol, 9, R137. 

Ref 2. Valouev, A., et al (2008) Genome-wide analysis of transcription factor binding sites based on 

ChIP-Seq data. Nat Methods, 5, 829–834. 

Ref 3. Rozowsky et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to 

controls. Nature Biotechnology, 27, 66-75. 

 

Ref 4. Jothi, R., et al (2008) Genome-wide identification of in vivo protein–DNA binding sites from 

ChIP-Seq data. Nucleic Acids Res, 36, 5221–5231. 

 


